论坛 设为首页 加入收藏

《魔鬼数学》7

一个数学界的超级明星为你揭示混沌的世界表象之下隐藏的数学思维之美,帮助数学门外汉习得用数学思维思考问题的技能,教你运用数学思维的力量,做出更准确的工作与生活决策。

《魔鬼数学》
中信出版社

7 微积分与牛顿

    接下来,我要教大家关于微积分的知识。准备好了吗?首先,我们要感谢艾萨克·牛顿。他告诉我们,圆的研究并没有特别大的难度。所有的平滑曲线,只要我们无限接近地观察,都跟直线非常相似。只要没有尖角,无论这条曲线如何弯曲盘旋,都无伤大雅。
    发射导弹时,导弹会以以下的轨迹运动:
    导弹的运动轨迹是一条抛物线,先上升,然后下降。在万有引力的作用下,所有的运动轨迹都会呈曲线形并接近地面,这是物理学的一个基本事实。但是,如果我们取非常短的一段并靠近观察,这条曲线就会变成下图所示的形状:
    再靠近一些,就会变成这样:导弹运动轨迹在肉眼看来就像一条直线,以一定的倾斜角度向上运动。越靠近观察,曲线就越接近直线。
    接下来是观念上的一个飞跃。牛顿说,好吧,让我们继续——把视野缩小到无限小,小到无法计量的程度,但不是零。这时候,我们研究的就不是一段很短的时间内导弹的运动轨迹了,而是某一个时点的情况。本来接近于直线的运动轨迹直接变成直线了,牛顿把这条直线的倾斜度叫作流数(fluxion),我们现在称之为导数(derivative)。
    阿基米德不愿意完成这种飞跃。他知道,多边形的边越短,就越接近于圆,但是,他绝对不会认为圆其实就是一个有无穷多条边而边长极短的多边形。
    与牛顿同时代的人中,也有人不愿意凑这个热闹,反对者中名气最大的是乔治·贝克莱(George Berkeley)。贝克莱用充满嘲讽的语气贬低牛顿提出的无限小这个概念:“这些流数是什么呢?其实就是迅速消逝的增量的速度。那么这些迅速消逝的增量又是什么呢?它们既不是有限量,也不是无限小的量,什么都不是。难道我们不能称它们是‘逝去量的鬼魂’吗?”遗憾的是,这一段逸事在现代数学文献中却没有记载。
    然而,微积分的确有效。如果围绕头部摆动一块石头,在突然放手后,石头就会以一个恒定的速度飞出去,运动轨迹呈直线形a,方向则正好是根据微积分基本公式计算的放手时石头的运动方向。这是牛顿的另一个惊人发现:运动物体会做直线运动,除非该物体受到其他力的作用,才会偏离原来的方向。这也是我们习惯于线性思维的原因之一:我们对时间与运动的理解,是在生活中观察到的各种现象的基础上形成的。甚至在牛顿提出他的那些定律之前,我们就已经知道物体会沿直线运动,除非有外力改变这种状况。

编辑:朴文